ทำความรู้จักกับ Machine Learning เบื้องหลังความสำเร็จที่ทำให้ AI สามารถเรียนรู้ได้ด้วยตนเอง

ทำความรู้จักกับ Machine Learning เบื้องหลังความสำเร็จที่ทำให้ AI สามารถเรียนรู้ได้ด้วยตนเอง

เคยสงสัยหรือไม่ว่าทำไมแพลตฟอร์มโซเชียลมีเดียอย่าง Facebook, Instagram หรือ YouTube ถึงรู้ว่าเราชอบดูอะไร หรือแม้กระทั่ง Spotify ก็ยังรู้ว่าเราชอบฟังเพลงแนวไหน รวมถึงทำไม Netflix ถึงชอบแนะนำหนังหรือซีรีส์แนวเดียวกับที่เราเคยดูมาก่อนอยู่เสมอ

สิ่งต่าง ๆ เหล่านี้ล้วนแล้วแต่มาจากการพัฒนาของ Machine Learning ซึ่งบอกได้เลยว่าเป็นตัวช่วยชั้นดี ที่จะเข้ามาช่วยเสริมให้การทำงานในภาคธุรกิจสามารถเติบโตได้อย่างเต็มศักยภาพมากที่สุด

Machine Learning (ML) คืออะไร

Machine Learning คือการให้ระบบได้เรียนรู้ด้วยตัวเอง ในรูปแบบของการสังเกตและวิเคราะห์ข้อมูลในอดีต ทำให้เกิดการเรียนรู้และประมวลผล ซึ่งเมื่อคุณนำระบบนี้เข้ามาใช้ก็จะช่วยพัฒนาศักยภาพให้กับองค์กรของคุณ เพิ่มความได้เปรียบในการแข่งขัน ลดเวลาทำงานและต้นทุนด้านแรงงานได้อย่างดีนั่นเอง

ระดับที่แตกต่างกันในการเรียนรู้ของ Machine Learning

ถึงแม้ว่าระบบจะมีการเรียนรู้ด้วยตัวเอง แต่ก็จำเป็นที่จะต้องเลือกรูปแบบการเรียนรู้ของ Machine Learning ให้เหมาะสมกับการใช้งานมากที่สุด เพื่อให้ได้ผลลัพธ์ที่ตอบโจทย์การทำงานภายในองค์กรของคุณ ซึ่งระดับการเรียนรู้ของ Machine Learning มีความแตกต่างกันออกไป ทั้งแบบ Supervised Learning, Unsupervised Learning และ Reinforcement Learning

Supervised Learning

Supervised Learning คือ การเรียนรู้ในรูปแบบที่มีผลลัพธ์ที่คาดหวัง (Desired Output) เป็นตัวกำหนดชัดเจน ระบบจำเป็นที่จะต้องใช้ชุดข้อมูลในการฝึกฝน เพื่อช่วยในกระบวนการเรียนรู้ ทำให้เกิดผลลัพธ์ที่เหมาะสมต่อการนำมาประยุกต์ใช้งานในเชิงธุรกิจ ยิ่งมีข้อมูลมาก ยิ่งทำให้เกิดการเรียนรู้ที่มีประสิทธิภาพมากขึ้น ส่งผลได้ผลลัพธ์ที่ได้แม่นยำมากยิ่งขึ้นนั่นเอง ซึ่ง Supervised Learning ยังสามารถแบ่งออกเป็นสองประเภทหลักๆ ด้วยกันดังนี้

Classification

Classification เป็นระบบที่จะทำให้เกิดการวิเคราะห์และแยกแยะประเภทของข้อมูลได้ตามที่ต้องการ เมื่อใส่รายละเอียดข้อมูลต่าง ๆ ลงไปทั้งหมด ระบบจะสอนให้ทำการแยกประเภท เนื่องจากข้อมูลเหล่านั้นมีจำนวนมาก และเป็นข้อมูลในลักษณะกลุ่ม หรือข้อมูลที่ไม่มีความต่อเนื่อง จนมนุษย์ไม่สามารถวิเคราะห์ได้เอง ซึ่งจะช่วยลดระยะเวลาในการทำงาน และเพิ่มประสิทธิภาพในการวิเคราะห์และแยกประเภทได้อย่างถูกต้อง

Regression

Regression เป็นการเรียนรู้ในรูปแบบที่นำข้อมูลต่าง ๆ มาทำการวิเคราะห์แยกแยะได้ โดยที่จะต้องเป็นข้อมูลที่มีความต่อเนื่องกัน เพื่อช่วยให้ ML สามารถเรียนรู้และประมวลผลออกมาให้ได้ตามที่ต้องการ

Unsupervised Learning

Unsupervised Learning คือ การเรียนรู้ในรูปแบบที่ไม่มีผลลัพธ์ที่คาดหวัง (Desired Output)เป็นตัวกำหนด ให้ระบบทำการเรียนรู้ด้วยตัวเอง โดยไม่จำเป็นต้องมีค่าเป้าหมายของแต่ละข้อมูล ระบบจะทำการวิเคราะห์ผ่านการจำแนกและสร้างแบบแผนจากข้อมูลที่ได้รับมา โดยส่วนใหญ่แล้ว การทำงานของ Unsupervised Learning นั้น จะแบ่งออกเป็นสองประเภทหลัก ๆ นั่นก็คือ Clustering และ Non-clustering

Clustering

Clustering เป็นการที่ระบบสามารถเรียนรู้และแยกกลุ่มของข้อมูลได้ด้วยตัวเอง ช่วยให้เราสามารถมองเห็นการแบ่งกลุ่มข้อมูลจากผลลัพธ์ที่ระบบแบ่งกลุ่มมาให้ และสามารถนำไปใช้งานในครั้งต่อ ๆ ไป

Non-clustering

Non-clustering เป็นการเรียนรู้ที่ไม่ได้มีเป้าหมายเพื่อการจำแนกกลุ่มของข้อมูล โดยมากจะเกี่ยวกับการระบุรูปแบบความผิดปกติของข้อมูล (anomaly) จากชุดข้อมูลที่ยังชี้ชัดไม่ได้ หรือไม่ได้มีการตั้งเกณฑ์ที่ชัดเจนว่ารูปแบบใดคือความผิดปกติ ระบบจะต้องเรียนรู้ความสัมพันธ์ดังกล่าวผ่านชุดข้อมูลตั้งต้น

Reinforcement Learning

Reinforcement Learning คือ การเรียนรู้แบบเสริมกำลัง ที่มีการเรียนรู้สิ่งต่าง ๆ จาก Agent (ผู้กระทำ Action) ภายใต้การเลือกกระทำสิ่งต่าง ๆ ให้ได้ผลลัพธ์ที่มากที่สุด ผ่านการลองผิดลองถูกภายใต้สถานการณ์หรือระบบจำลอง ที่พัฒนาระบบการตัดสินใจให้ดีขึ้นเรื่อย ๆ เช่น การเล่นเกมโกะให้ชนะผู้เล่นระดับโลก ไปจนถึงการพิจารณาเลือกซื้อสินทรัพย์ และการลงทุนในรูปแบบต่าง ๆ เป็นต้น

ซึ่งการนำ Machine Learning เข้ามาใช้งานในองค์กรนั้น จำเป็นที่จะต้องมีการเลือกใช้งานให้เหมาะสมกับความต้องการมากที่สุด ซึ่งคุณสามารถสอบถามรายละเอียดและข้อมูลเพิ่มเติมเกี่ยวกับการนำ ML มาใช้ภายในองค์กรกับเราได้ เพื่อให้ธุรกิจของคุณเติบโตได้อย่างเต็มประสิทธิภาพ

ติดต่อเรา

ชื่อ*

ชื่อบริษัท*

ชื่อตำแหน่ง

เบอร์โทรศัพท์*

อีเมล*

ข้อความ

ฉันต้องการรับโปรโมชันและข่าวสารทางการตลาดเกี่ยวกับ Data Wow และบริการอื่น ๆ จากเรา บริษัทในเครือ บริษัทย่อยและพันธมิตรทางธุรกิจ ​(คุณสามารถยกเลิกได้ทุกเมื่อ)
ที่ตั้งบริษัท

1778 อาคารซัมเมอร์ฮับ ออฟฟิศ, ชั้น 6
ถนนสุขุมวิท แขวงพระโขนง เขตคลองเตย
กรุงเทพมหานคร 10110
ประเทศไทย

ติดตามเรา
ISO ISMISO PIM